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The results of investigations in [l] are extended to multidime~ional systems 
that become nonlinear at p = 0, Two-dimensional mechanical systems 

were investigated in [Z; 3). The characteristic equations of systems consider- 
ed here contain in the critical system either a pair of pure imaginary roots or 

two zero roots with one or two groups of solutions and = roots with negative 
real parts in the adjoint system. It is shown that the investigation of such 
systems necessitates the imposition on the system of some constraints that supple- 
ment those specified in Cl]. The auxilliary function uf’ (6) used in the deter- 
~na~on of Liapunov’s function is derived by a different method than in [l-3]. 
In two of the three investigated cases the problem is reduced to the determinat- 
ion of roots of some integral real irrational function. An example is presented. 

The question of existence and stability within region N of steady oscillations of 
multidimensional quasi-linear mechanical systems whose equations of motion written 

in the standard Cauchy form contain in their right-hand sides series in powers of some 
positive parameter 1-1 . For p = 0 the system becomes linear and its characteristic 
equation has a pair of pure imaginary roots and n roots with negative real parts. An 
algorithm for the determination of region N is also indicated. 

1. Let us consider a mechanical system whose differential equations in the stand- 
ard Cauchy form are 

(1.1) 

Xj’ = k$lPjk% + zjl P’XjZ (-5 Y9 x1y * 

whose characteristic system converts for P = 0 

X. = x, (3, y), y’ = 

..,x,), j= 1,2,...,n 

into the following nonlinear system: 

y, (XI Y) (1.2) 

We assume that all of the 1” -4“ stipulations in El] are satisfied by (1.11, i. e. the 
right-hand sides of (1.1) are absolutely convergent series in the investigated region u 
of variation of variables 5, y, Zj and parameter p, X,, Yi, Xi, are sums of 
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forms relative to variables X, @, xl, , . . , xfl of any finite order ~,i, ~~1, vjl 
with constant coefficients and lower powers of form ~1, qllr, qjl are higher than 
unity, the roots of polynomial D (K) = 1 pij - 6ijX 1 are different and have negat- 

ive real parts, and the right-hand sides of the critical system vanish when x: = y = 0. 
Note that when the last condition is not satisfied by (1. l), then unlike in [l), it can be 

reduced to the required form only if I&X., + . . . + h,p, # 0 for any nonnegative 
integers hL such that Zhb > 0 [4]. We also assume that the following conditions 
are satisfied by (1.1). 

1”. Functions X0 and Y, are of the form 

where aap, and bag 

2”. Functions 
such that F (x, y) 

are constant coefficients. 

F (5, Y> = syo - YX, and R (5, y) = xXO + YY, are 

is of constant sign and cp (2 n) = 0 , where 

e 

3”. ml > no, where m, = min (G,, %l}, mxl, mgl are the lowest powers 
of forms that in the critical system are free of x1, . . . , x,~ .I 

We transform (1.1) using the same method as in [l] to the canonical form, carry 
out the substitutions x = P con 0 and y = F sin 8 ,and instead of (1.1) obtain 

the following system: 

Z;+T = hkzk + gk%k + jl pzk+T, I(6 8, :I, . . . I ‘n) 

s=2T_tl,...,n 

R, (7, e) = x0 (7 cos 8, I: sin e) cos e -i- Y. (7 ~0s e, ? sin e) sin 0 

i;;,(r,O)=+[Yo(- t case, t sin8) COST -X0(? cose,i: sip e) sin el 

When the coefficients of transformation to the canonical form [l] are known, funct- 
ions R1, P,, Z,, can be readily determined. 

To solve the problem of existence and stability relative to the region of oscillat- 

ions in system (1.4) that are stable in the sense given in [2) we shall try to use the 
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results of inv~tiga~~s 111, For this it is, first of all, necessary to transform (1.4) 
soas to eliminate the nonlinear functions R, and PO in the right-hand sides 
of the critical system. We proceed as follows. Noting that system (1.2) in terms 
of variables i: , 8 with conditions 1” and 2” satisfied has the periodic solution i: = 

i,eq(aX, where 7, is an arbitrary constant, we carry out in (1.4) the substitut- 
ion 

F z &P(a) 
(1.5) 

where r is the new variable. The critical system now assumes the form 

7.’ = 5 Pt’R, (r, 0,2x, . . . , 23, 0 = F. + jlplF, (r, 8, ~1,. . . , z,) (1.6) 
I==1 

1 
F. (r, 0) = rz e-*@jF (re@@) cos 8, rev(a) sin 6) 

F, (r, 0, zr, . . _ , 2,) = Pl (rev@), 0, 21, . . . , z,,) 

The form of the adjoint system remains unchanged. For pk functions z,, (r, 
0, 21, - * * , 2,) are obtained from z,, (I’, 8, zi, . . ., z,) as the result of sub- 

stitution (1.5). Functions fir, F,, Z,, are the sums of forms relative to r, Zir - - 
z, with coefficients that are 2 x -periodic functions of 

is’ tie same as that of the corresponding functions in [l]. 
0 , hence their structure 

Functions (1.6) are exactly 
the same as functions RI and Fl in Cl], if we set f (9) zz 0 l Function F, 
(r, e> = r~o-lJ’~mcl) (0) is of fixed sign according to assumption 2”, hence Fimm,l) 

# 0 for all 8 E IO, 2 n), r > 0. 

We introduce the new variable p by formula 

(1.7) 

where MS, and Mr,, are the highest orders of forms appearing in Xl and Y1 

and independent of zl, . . . , z,, ul(Q) (9) are some, so far unknown, 2 n-perio- 

dic functions, and p is assumed so small throughout the investigation region U that 
function p which is the solution of (1.7) is positive definite for all r > 0 and any 

8 . It is further assumedthat under the above conditions r > 0 and H = & 

(Pt wf%) > 0 * We select unction ul@), ~~(4) (0) = 0 so as to have them 

2 z-periodic and, as the result of transformation (1.7), that the expression at /.c in 

the right-hand side of the first equation of the critical system is in the form of sum of 

the polynomial 

Lr (PI = .>$i, P”d@ 

with constant coefficient gl(q) and of some function of the form 

. , 4, NI = max {XI, -+,I) 
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Functions n,(qf (8) are uni~ely determined by this conditio~since stipulations 
1” and 2” are satisfied. Equations and their determinants yield, unlike in [l]. the 
following solution for ul(*f (0) and for coefficients of the polynomial L, (p): 

ui” =I up = (m-m) = 
* 0 . = u1 

(Mt-m0ta) 
Ul 

(Mr-mofs) 
= 241 =...= Ul OfI) ~ 0 

where R1(l,‘) (0) are the coefficients at p* of function I?, in (1.6). 
Having determined functions r+(q) and constants gz(4) , we obtain the system 

of equations which consists of the critical system of the form 

and of the adjoint system derived from ( 1.4) using (1.5) and (1.7). Thus the investig- 
ated here system (1.1) is reduced to the form obtained in [I], whose only difference 
from the latter is in the form of periodic coefficients of forms whose derivation is bas- 
ed on transformation (1.5). Further analysis is carried out exactly as in [I]. Theor- 
ems 1-3 [l] on the existence of steady oscillations and their stability within region 
N C u , the estimate of p , and of parameters in region N remain valid, al- 

though the estimates themselves undergo changes related to the use of transformation 

(1.5). 

2. Let the motion of the mechanical system be defined by the system of different- 
ial equations that consists of the critical system 

x’ = - %i + x0 + *&x,, 
m 

?I* = kc + yo + lzl p’l’, CL 1) 

which for ~1 = 0 becomes nonlinear of the form 

P’ = - 3Ly + x,, 2’ = h;l: + y, (2.2) 

which has in the characteristic equation a pair of pure imaginary roots, and of the 
adjoint system consisting of the same n equations as (1.1). The form of functions 

x0, Y,, XI, Y[, x,, (I = 1, 2, . . . ; s = 1, 2, . . . ) n) is the same as in 
(1.1). The investigated system will be analyzed on the same assumption as made 
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at the beginning of Sect. 1 with respect to (1. l),with the exception of assumptions 1” 
-3”. Note that, as in [l], it is always possible to reduce (2.1) to the form in which 
its right-hand sides vanish when 2 = Y = 0 and the stipulated conditions are 
satisfied [4]. 

We make the following additional assumptions. 

1”. Functions X0 and Y. are of the form (1.3) where m, > 2, acrg and b,, 
are constant coefficients, and function Q = h (x” + 9”) + F (5, Y) is positive de- 
finite throughout the investigation region U. 

2”. There exists for system (2.2) a holomorphic integral 1 (5, y) = c2 of const- 
ant sign of the form I = z2 + y2 + CD (2, y) , where @ is a function of order 
not lower than the third with respect to 2 and Y, and while I retain the constant sign 
throughout the region of motion investigation. 

It is shown in [4] that the condition of existence of such integral is the necessary 
and sufficient condition for (2.2) to have periodic solutions of the form x = x(% + 

x(%2 + . . . ,k y = y(i)c + y(%2 + . . . , where c is an arbitrary constant and 

z@) and y( j are periodic functions. On these assumptions the equation r2 + @ 
(r cos 8, r sin f3) = c 2 determines according to [4] two solutions for r in the form 
of convergent series r=tc+v2- (6)c2&v3(8)c3+... , where 

Uyc (6) is a periodic function of 8 . Since the substitution of n + 8 for 8 trans- 
forms one of these solutions into the second, we take in this expression all terms with 
the plus sign. 

As in Sect. 1, we pass to canonical variables and, then, to polar coordinates 
using formulas x = 7 cos 8 and y = P sin 0, and substitute r for ? using 

formula 
r2 = P2 + CD (? cos 8, 7 sin e) (2.3) 

We assume that the series f = r + V, (0) r2 -t- us i.u) r3 i- . . . which repres- 
ents the solution of (2.3) is absolutely convergent throughout the region u 3 N of 

solution analysis. As the result, the critical system assumes the form 

r* = rj,lprR,(r, 8, Q, . . . , z,), 8’ = h + Q. (r, 0) + (2.4 

while the adjoint system, with allowance for substitution (2.3), is of the same form 
as the above. The lowest with respect to r terms at each pa are exactly the same 

as the lowest terms with respect to r at p8 of the system in Sect. 1. 
We introduce the new variable p by formula 

r = P + P jjl PW 03 (2.5) 

where, as in Sect. 1, we assume that U,(r) (8) are 2 ar- periodic functions and that 

p is fairly small so that r > 0 and H = dr/8p > 0. We further assume that 

for all p E U where U 2 N is the region of investigation, the series (2.5) are 

absolutely convergent for each 0 E IO, 2 n). The necessary and sufficient condit- 

ions that must be satisfied by constants g,(r) if function Ui(‘) is to be 2 rt- periodic, 
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is in this case somewhat different from conditions in [l, 2] and in Sect. 1 above. Using 
these conditions for determining gr@) and ul@) and stipulating in addition UI@) (00) 

= 0, we obtain: 
in the case of ml < ma 

n,(m) (El) Z 0, g1(m) = 0 (m = $, 2, . . . , m, - 1) (2.6) 

0 
u’Lk’ (6) = +s [RF’ kf (6) - g’,@] de, 

0 

(0 1 
Z? 

g1 
==2n s 

I?$ k, (0) de (k = n?q, . . . , mo - 1) 

0 

0 0 

i--m&l 

J’ci) ((YJ) = Rp’ i, 0 ( ) - i - mo,mo + 1,. . . 

where Q O(a) are periodic coefficients at Pa in function 

Qo [P -I- rjl P’V, (Q 0) 

in the case of m, == ma the same solutions, except for the equalities in the 
second line of (2.6); 

in the case of m, > m, we have u,(~) z 0, glcrn) = 0, and 172 = 1, . . . , 

ml - 1, while the expressions for u,(~J), g,(“l), +(ml+r), gl(ml+r), , , . are deter- 

mined by the equalities in the third line of (2.6) for i = ml, m, + 1, .., . 
The first equation of the transformed system is formally of the same form as the 

first of Eqs. (1. S), except that instead of polynomial L, (p) it contains the series 

Further analysis is similar to that set forth in [I], but on the assumption of absolute 
convergence of respective series thr~gbout the investigation region U -‘J N. Theor- 

ems 1 - 3 remain valid, except that in their formulation it is necessary to consider 
real positive zeros of odd multiplicity of the real irrational entire function&OD (p)[5] 
instead of the positive roots of odd multiplicity of polynomial L, (p) . 

If the derivation of positive roots of function Llm (p) (or of polynomial L, (p)) 
proves to be impossible, the schemes considered here and in [l] admit the use of the 
upper and lower bounds of the d~p~ition of every such root, which requires minimal 
accuracy of their determination. Thus, if 
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where & are approximate values of roots ps with accuracy 
ary in addition that 
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As, then it is necess- 

3. Let us now consider the same problem for a system consisting of the critical 
system of form 

and of the adjoint system of the same form as everywhere previously. For p = 0 
the critical system becomes nonlinear 

2’ = - hy + x,, y’ = Y(J (3.1) 

whose characteristic equation contains two zero roots with a single group of solutions. 
We retain all assumptions about the form of functions X, , Y, , and XsI, as 
well as the assumptions defined in Sect. 1, except stipulations 1” - 3”. The remark 
made in Sect.1 about the possibility of reducing the system to the investigated from 
remains valid. We make the following additional assumptions. 

1”. Functions X, and YO are of the form (1.3) in which m,, > 2, %p and 
bais are constant coefficients, and function Qr = hy2 + F (z, y) is positive defin- 

ite throughout the investigation region u 3 N. 

2”. There exists for (3.1) a holomorphic integral I, (r, y) = c2 of constant sign 
in which I, = y2 -I- H, has all the properties of integral 1 defined in Sect. 2. 
Among these, the equation 1, (r cos 8, r sin 8) = C” has a solution for r of the 

form r = c + iY2 (0) 2 + iT3 (0) 2 + . . . . which depends on a single arbitrary 
constant C, and 2rk (0) are 2 a- periodic functions of 0 . The solutions for 
r is holomorphic in c and the series is absolutely convergent throughout region u 

1 Nof steady oscillations. 
We reduce the considered system, using the same transformation sequence as in 

Sect. 2, including substitution t = r + Fz (0) r2 + Z3 (0) r3 + . . . , to the same 
form as in Sect. 2 with an accuracy to within the second equation of the critical system, 

which in this case is of the form 

8’ = h sin2 8 + Qo* (r, 6) + 
m 

z l p’F,* (r, 0, ZI, . ..,Zn), Qo*(Ge)=$ 
Z-1 

where T- is expressed in terms of r in conformity with the last substitution and h 
sinsfJ+Q,,* .(r, 0) > 0 for r # 0 by virtue of condition 1’. The equations which 

determine gro) and ur(l) (0) differ considerably in this case from those obtained 

above and, also, from those in [l, 23. 
We have; 
in the case of m, < m, 
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u,(W (e) =_ 0, gl(m) = 0 (m = 1, 2, . . . ) m, - 1) (3.2) 

du(i) 
R~~i)(8)-~sin20-$j-= g:“’ (i = mr, . . . ) mo - 1) 

RF* ‘) (0) _ ), sin2 fj duih) _ 
k-m+1 

c Qo 
*WG(,) a;f' _ 81:') (k = mo,mo + I,...) 

s=1 

where Qo*(@ is Q. Cal with the substitution of e, for u, ; 
in the case of m, = ms the same system, except for the equations in the second 

stroke of (3.2); and 

in the case of ml > mo the system consisting of equalitities in the first line of 

(3.2)and, also, ofitslastlinefor k = m,, ml + 1, . . . . 
We determine gl(” in (3.2) so as to have all u,(l) (0) 2 n- periodic. To do 

this it is necessary and sufficient to determine g,(r) by equations of the form 

Rr* ‘) (0) - gl” = h sins C@(e) + V)(e) (sf ff) (e) de = 0) (3.3) 

0 

where f,(l) (0) are some 2 rr -periodic functions each of which satisfies the condit- 
ion appearing above in parentheses. Periodic functions UIC1) (0) are determined by the 

expressions 

u$‘) (e) = [ ff) (e) de 
0 

thus Us (0) = 0. 
For the joint determination of gl(‘) 

- Y(l) in the form 

and fi(‘J ((3) we represent functions R,(l+‘) 

@ r) _ y(z) = cf) + i (a!‘) sin se + b!” cos se) 
a=1 

and seek functions fIcz) themselves in the form of sums 

z-2 
jr) = s (@ sin se + dg) cos se) 

s=1 

Obviously fl(‘j 
Y(‘) and fl(‘) 

satisfy the condition formulated above. Substituting Rl(l,*) - 
into (3.3) for determining the 21 - 3 unknown gl(‘), c,(r), and 

(E8cz) we obtain a system of 21 + j equations for each l , which is compatible 

only when certain supplementary conditions imposed on coefficients are satisfied. 
These conditions for not very large 1, can be readily obtained in explicit form. Furth- 

er analysis is similar to that in Sect. 2. 

4, E x a m p 1 e. Let us investigate the problem of stability of the unperturbed 
motion z = y = z1 = z2 = 0 of a mechanical system whose perturbed motion equat- 
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ions are 
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(4.1) 

Subsequently the explicit form of functions CD, presented here is important only when 
estimating the dimensions of region N . 

System (4.1) evidently satisfies the conditions formulated in Sect. 1, and 

F = A (x4 $- y*), R = Axy (x2 - y2), q = ‘i4 in [h i (cm 4% + 3)1 

Let us investigate the stability of unperturbed motion z = y = zr = za = 0 of 
system (4.1) using the theorem on reduction for stable motion [6]. According to 
Kamenkov’s terminology [6] system (4.1) relates to the so-called unessential particular 
case, since in it the right-hand sides of the adjoint system vanish for 21 = z, = 0, 
while the right-hand sides of the critical system are not identically zeros. It was shown 
in [6] that the problem of stability of the zero solution of the analyzed system is equiv- 
alent to the problem of stability of the zero solution bf a second order system of the 
form 

x’ = - Ay3 + hxg + l.3, y’ = Ax3 t_ hy5 + ly7, h = pa, 1 = pb 

Two possibilities may exist. 
1) a > 0 and b < 0. 

By the theorem on reduction the unperturbed motion is unstable for any n > 0 , 
while by Theorems 1 and 2 in [l] a p* and a region N (Ao*, s,*, Q*) such that 
forall p.<n* and all t ez (to, w) the representing point P (t) E N, can be found 
if only P (to) E N, where to is the initial instant of time. Steady oscillations exist 
and are stable within region N whose dimensions with respect to coordinate P are 
determined by pr + Ed* and pr - ep* in conformity with [l]. In this case 

where K and E are complete ellipitic integrals of the first and second kind. If 
pr issmall (a/b--+O,a#O), then for every p < p* we find that in spite of the 

theorem on reduction which implies instability, the deviations of P (1) from the 
coordinate origin can be made small with respect to p by a suitable secltion of a 

and b s provided their initial values are small. 

2) a<0 and b>O. 

By the theorem on reduction the unperturbed motion is asymptotically stablesfor any 
p > 0. By the Theorems 1 and 2 in [1] the property defined in case 1) is also present 

here, but region N is different, since it contains the coordinate origin. The dimens- 
ions of M relative to coordinate p are also determined by pi . Hence, when 
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a/b-O and a+0, the region of coordinate origin attraction contracts so that 
the fact of asymptotic stability looses its practical value. 

The results of application of Theorems 1 and 2 [l] thus provide a definite supplem- 

ent to the results obtainable with the use of the theorem on reduction. Moreover, they 
obviously make possible the investigation of motion not only in the equilibrium position 
neighborhood but, also, away from it, for instance, at considerable r+. 

In the above example the estimate of 1%’ was considered only in relation to co- 
ordinate p . The complete estimate made on the basis of Theorem 3 [l] yielded 
the following general system of inequalities which must be satisfied by u and para- 
meters of region il’: 

L, (?J + xa. < 9, L, (?,i) - XI’ > 0 

where 

x, = 4fiAo~y2K + P ?z A 02r1yy2 + P’2y (Y,y + PY,) (v = a, iv 

L, (P) = bpP5 + $q7)P7, Pa = Pj + El, PO = Pj - &2, 

g' = max {P, d 

rlv= p,+ 2npr2y, rzy = pys51sg)+ py7@ 

($5) =; - 
10 y (3 I a I + I d5) I ) 1 

c5t7) zz c(3vT (b ] + 1 g(') I) 
' 10 1 

Y, = 3l2&, y2 = 3lzS2, ~,y=~IAoSl+2~lalr~,,+ 

4 fi I b I riyl rly 

Y’, = ~TA&S2r,,, Y6 = PF S, + ‘j6 rlaS,, Y, = VS, + fTr,,S, 

S, = I al I + I a2 I + I bI I + I b2 I, S2 = I a5 I + I Q I -I- I b, I f I be I 
s3=1cll+1c21, s,=1d,1+1d21, s,=Ic31$.Icql, s6=1d3i-t1d4j 

(5) _ 
g1 2K (;T, 2) 

The author thanks participants of the Seminar on Analytical Mechanics and its 

Leader, V. V. Rumiantsev, for discussing this subject. 
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